Effects of Spatial and Temporal Aggregation on the Accuracy of Statistically Downscaled Precipitation Estimates in the Upper Colorado River Basin
نویسندگان
چکیده
To test the accuracy of statistically downscaled precipitation estimates from numerical weather prediction models, a set of experiments to study what space and time scales are appropriate to obtain downscaled precipitation forecasts with maximum skill have been carried out. Fourteen-day forecasts from the 1998 version of the National Centers for Environmental Prediction (NCEP) Medium-Range Forecast (MRF) model were used in this study. It has been previously found that downscaled temperature fields have significant skill even up to 5 days of forecast lead time, but there is practically no valuable skill in the downscaled precipitation forecasts. Low skill in precipitation forecasts revolves around two main issues. First, the (intermittent) precipitation variability on daily and subdaily time scales could be too noisy to derive meaningful relationships with atmospheric predictors. Second, the model parameterizations and the coarse spatial resolution of the current generation of global-scale forecast models might be unable to resolve the local-scale variability in precipitation. Both of these issues may be addressed by spatial and temporal averaging. In this paper the authors present a diagnostic study using a set of numerical experiments to understand how spatial and temporal aggregations affect the skill of downscaled precipitation forecasts in the upper Colorado River basin. The question addressed is, if the same set of predictor variables from numerical weather prediction models is used, what space (e.g., station versus regional average) and time (e.g., subdaily versus daily) scales optimize regression-based downscaling models so as to maximize forecast skill for precipitation? Results in general show that spatial and temporal averaging increased the skill of downscaled precipitation estimates. At subdaily (6 hourly) and daily time scales, the skill of downscaled estimates at spatial scales greater than 50 km was generally higher than the skill of downscaled estimates at individual stations. For the 6-hourly time scale both for stations and for mean areal precipitation estimates the maximum forecast skill was found to be approximately half that of the daily time scale. At forecast lead times of 5 days, when there is very little skill at daily and subdaily time scales, useful skill emerged when station data are aggregated to 3and 5-day averages.
منابع مشابه
Analysis of Streamflow Changes under Climate Change Using Rainfall-Runoff Model in the Kor River Basin
Abstract In this study, the predicted monthly temperature and rainfall data from HadCM3 model (base period, ۱۹۷۲-۲۰۰۱) and next period (۲۰۱۱-۲۰۴۰) under A2emission scenario were used to investigate the impacts of climate change on runoff variations in the Kor river basin. HadCM3 model output was downscaled based on a temporal downscaling approach (Change Factor) and spatial downscaling appro...
متن کاملAnalyzing Climate Zooning and Climate Change Effects on Discharge of Jajrood River Basin
In this study, for climate zoning and determining the effects of climate change on discharge of Jajrood River Basin, data from 9 available stations in Jajrood River Basin were used. In order to create climatic zones in the Jajrood River Basin, multivariate cluster analysis was used. To validate the data, discriminant analysis was employed. For investigating the effects of temperature and precip...
متن کاملAccuracy Analysis of Precipitation Regionalization Methods Based on Spatial Interpolation Techniques in Zayandeh-Rud River Basin
In the present study, we used 27 precipitation average monthly data from synoptic, climatologic, rain-guage and evaporative stations located in Zayandeh-Rud river basin for the period of 1970-2014. Before interpolating, the missing data in the time series of each station was reconstructed by the normal ratio method. Also, for the data quality control, the Dickey-Fuller and Shapiro-Wilk tests we...
متن کاملUsing the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran
Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...
متن کاملSpatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)
Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...
متن کامل